METRICA DEL PLANO Y METRICA DEL ESPACIO

PASANTIA CHILE 2012
UNIVERSIDAD DE SALAMANCA

METRICA DEL PLANO

Tabla de Contenido

- 1. Ecuación de la recta
 - 1.1. Tipos de ecuaciones de la recta
 - 1.2. Pendiente de una recta. Ecuación explicita
 - 1.3. Rectas paralelas
 - 1.4. Rectas perpendiculares
 - Mediatriz de un segmento Punto simétrico de un punto a una recta
 - 1.5. Ángulo de dos rectas
- 2. Distancias
 - 2.1. Distancia de dos puntos
 - 2.2. Distancia de punto a recta

1. Ecuación de la recta

Definición 1.1 La ecuación de una recta viene determinada por un punto $A(x_0, y_0)$ y un vector direccional $\vec{\mathbf{u}}(u_1, u_2)$.

$$r \equiv \langle A; \vec{\mathbf{u}} \rangle$$

Un punto X pertenece a la recta r, observar el dibujo, si el vector \overrightarrow{AX} es proporcional al vector $\overrightarrow{\mathbf{u}}$, es decir

$$\overrightarrow{AX} = \lambda \, \vec{\mathbf{u}} \ para \ alg\'{u}n \ \lambda \in R$$

Siendo

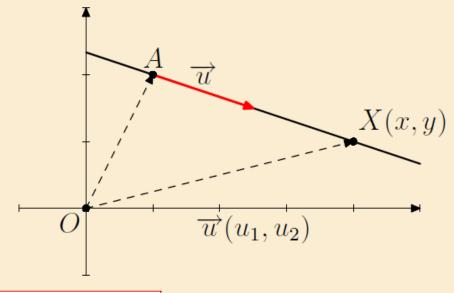
$$\overrightarrow{OX} = \overrightarrow{OA} + \overrightarrow{AX}$$

$$\overrightarrow{AX} = \overrightarrow{OX} - \overrightarrow{OA}$$

$$\overrightarrow{OX} - \overrightarrow{OA} = \lambda \vec{\mathbf{u}}$$

$$X - A = \lambda \vec{\mathbf{u}}$$

se obtiene la ecuación



$$\mathbf{r} \equiv X = A + \lambda \, \vec{u} \tag{1}$$

1.1. Tipos de ecuaciones de la recta

• Ecuación Vectorial. Expresando la ecuación 1 en coordenadas

$$(x,y) = (x_0, y_0) + \lambda (u_1, u_2)$$

• Ecuaciones Paramétricas. Separando las componentes

• Ecuaciones Continua. Despejando en la expresión anterior el parámetro λ e igualando

$$\frac{x - x_0}{u_1} = \frac{y - y_0}{u_2}$$

Observa que las tres ecuaciones anteriores muestran los mismos detalles de la recta, su punto y su vector direccional, pero escritas de forma diferente.

• Ecuaciones Cartesianas. Operando la igualdad anterior, resulta

$$Ax + By + C = 0$$

también llamada ecuación cartesiana o implícita. El vector de la recta corresponde a $\vec{u}(-B,A)$

Ejemplo 1.1. Determinar las ecuaciones de la recta que pasa por los puntos A(1,2) y B(0,3).

Solución: El vector director $\vec{u} = \vec{AB} = (-1, 1)$

- Ecuación Vectorial. $(x,y) = (1,2) + \lambda (-1,1)$
- Ecuaciones Paramétricas. $\begin{cases} x = 1 \lambda \\ y = 2 + \lambda \end{cases}$
- Ecuación Continua. $\frac{x-1}{-1} = \frac{y-2}{1}$
- Ecuación Cartesiana. Operando la igualdad anterior y ordenando se obtiene la expresión:

$$x + y - 3 = 0$$

Ejercicio 1. Determinar la dirección y dos puntos de la recta

$$\frac{x-1}{2} = \frac{y+1}{3}$$

Ejercicio 2. Dada la recta

$$r \equiv \begin{cases} x = 1 + 2\lambda \\ y = 3 - \lambda \end{cases}$$

Determinar: un punto, su dirección y expresarla en forma continua.

Ejercicio 3. Hallar la ecuación continua de la recta 2x + y = 3.

Ejercicio 4. Escribe las ecuaciones paramétricas de las rectas que pasan por:

a)
$$A(6,-2) y B(0,5)$$
 b) $C(0,0) y D(5,0)$ c) $E(3,2) y F(1,2)$

b)
$$C(0,0)$$
 y $D(5,0)$

c)
$$E(3,2)$$
 y $F(1,2)$

Ejercicio 5. Halla las ecuaciones paramétricas de cada una de las rectas siguientes:

a)
$$2x - y = 0$$
 b) $x - 7 = 0$

b)
$$x - 7 = 0$$

c)
$$3y - 6 = 0$$

Ejercicio 6. La recta $r \equiv m x + 4y + 8 = 0$ para que el punto C(-2, -1). Hallar m y todas las ecuaciones de r.

Ejercicio 7. Halla k para que el punto C(2,k) pertenezca a la recta

$$\begin{cases} x = -1 + 3\lambda \\ y = 2 - \lambda \end{cases}$$

Ejercicio 8. Escribe la ecuación continua de las rectas:

$$a) 2x - y = 8$$

b)
$$x - 7y = 1$$

$$c) \quad \begin{array}{rcl} x & = & 6 - 6\lambda \\ y & = & -2 + 7\lambda \end{array}$$

1.2. Pendiente de una recta. Ecuación explicita

Dados dos puntos $A(x_0, y_0)$ y $B(x_1, y_1)$, el vector dirección es

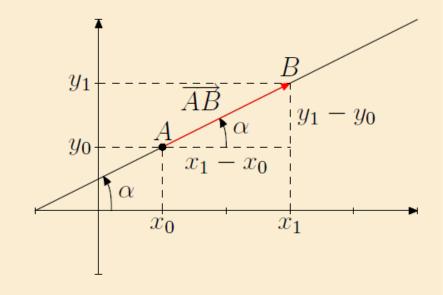
$$\overrightarrow{AB}(x_1-x_0,y_1-y_0)$$

La ecuación de r en forma continua

$$\frac{x - x_0}{x_1 - x_0} = \frac{y - y_0}{y_1 - y_0}$$

Despejando

$$y - y_0 = \frac{y_1 - y_0}{x_1 - x_0} \cdot (x - x_0)$$



Se define la pendiente m de r al número $m = \frac{y_1 - y_0}{x_1 - x_0} = \tan \alpha$

La pendiente es una medida de la inclinación de la recta respecto a la parte positiva del eje Ox. La ecuación anterior se llama **punto-pendiente**

$$y - y_0 = m \cdot (x - x_0)$$

Y si se opera se obtiene la ecuación explícita

$$y = m x + n$$

Ejemplo 1.2. Hallar la ecuación explícita y la pendiente de la recta:

$$r \equiv 4x - 2y - 5 = 0$$

Solución: Despejando y se obtiene la ecuación explícita:

$$y = 2x + \frac{5}{2}$$

La pendiente es m=2.

Ejemplo 1.3. Hallar la ecuación la recta que pasa por el punto A(1,3) y tiene de pendiente m=5:

Solución: Por la definición anterior

$$y - 3 = 5\left(x - 1\right)$$

Ejercicio 9. Determinar la pendiente y el vector direccional de cada una de las rectas:

a)
$$3x - y = -1$$

b)
$$2x - 3y = 10$$

c)
$$x + 2y + 6 = 0$$

$$(d) - x + 2y = 10$$

$$e) \ \ x = 0$$

$$f) \ y = 0$$

1.3. Rectas paralelas

Definición 1.2 Dos rectas r y s son paralelas si sus vectores direccionales son $\overrightarrow{\mathbf{u}}$ y $\overrightarrow{\mathbf{v}}$ son proporcionales.

Teorema 1.1. Dos rectas r y s son paralelas si los coeficientes de sus ecuaciones son proporcionales

$$A x + B y + C = 0$$

$$A' x + B' y + C' = 0$$

$$r \parallel s \Longleftrightarrow \frac{A}{A'} = \frac{B}{B'} \tag{2}$$

Teorema 1.2. Dos rectas r y s son paralelas si tienen la misma pendiente

$$r \parallel s \Longleftrightarrow m_r = m_s$$

Ejercicio 10. Comprobar que las rectas r y s son paralelas:

$$r \equiv -x + 3y + 4 = 0$$
$$s \equiv 2x - 6y - 1 = 0$$

- a) Con sus vectores.
- b) Con sus coeficientes.
- c) Con sus pendientes

1.4. Rectas perpendiculares

Definición 1.3 Dos rectas r y s son perpendiculares si sus vectores direccionales $\overrightarrow{\mathbf{u}}$ y $\overrightarrow{\mathbf{v}}$ son ortogonales o perpendiculares, es decir cuando el producto escalar es cero.

$$\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}} = 0 \tag{3}$$

Teorema 1.3. Dos rectas r y s

$$A x + B y + C = 0$$

$$A' x + B' y + C' = 0$$

son perpendiculares si los coeficientes de sus ecuaciones verifican

$$r \perp s \Leftrightarrow A \cdot A' + B \cdot B' = 0 \tag{4}$$

Teorema 1.4. Dos rectas r y s son perpendiculares si sus pendientes verifican la relación

$$r \perp s \iff m_r \cdot m_s = -1 \tag{5}$$

Ejemplo 1.4. Comprobar que las rectas r y s son perpendiculares:

$$r \equiv -x + 3y + 4 = 0$$
$$s \equiv 6x + 2y - 1 = 0$$

Solución: Los vectores direccionales de las rectas r y s son $\overrightarrow{\mathbf{u}}(-3,-1)$ y $\overrightarrow{\mathbf{v}}(-2,6)$, como

$$\overrightarrow{\mathbf{u}}(-3,-1) \cdot \overrightarrow{\mathbf{v}}(-2,6) = (-3)(-2) + (-1)(6) = 0$$

• Mediatriz de un segmento

Definición 1.4

Dados los puntos $A(x_0, y_0)$ y $B(x_1, y_1)$ definimos la mediatriz m_{AB} del segmento AB como la recta perpendicular a la recta AB que pasa por el punto medio de A y B.

Dados los puntos A(0,0) y B(4,2), su vector es

$$\overrightarrow{AB}(4,2) \sim (2,1)$$

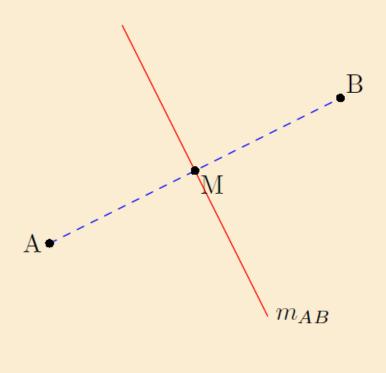
luego la dirección perpendicular es $\vec{v}(-1,2)$.

El punto medio M es

$$M = \frac{A+B}{2} = \left(\frac{0+4}{2}, \frac{0+2}{2}\right) = (2,1)$$

la ecuación de la mediatriz es:

$$m_{AB} \equiv \frac{x-2}{-1} = \frac{y-1}{2}$$



• Punto simétrico de un punto a una recta

Dado un punto $P(x_0, y_0)$, indicamos por P' el punto simétrico de P respecto de una recta r e indicamos por H el pie de la perpendicular que pasa por P. Se cumple que H es el punto medio de P y P'.

Sea P(0,0) y $r \equiv 2x + y - 5 = 0$. La perpendicular a r por P es la recta s

$$s \equiv \frac{x-0}{2} = \frac{y-0}{1}$$
 $x-2y=0$

H es la intersección de $r \cap s$.

$$\left. \begin{array}{l} r \equiv 2\,x + y - 5 = 0 \\ s \equiv x - 2\,y = 0 \end{array} \right\} \Longrightarrow H(2,1)$$

Sea P'(x, y), como H es el punto medio de P y P'.



$$H = \frac{P + P'}{2} = \left(\frac{0 + x}{2}, \frac{0 + y}{2}\right) = (2, 1) \begin{cases} \frac{x}{2} = 2\\ \frac{y}{2} = 1 \end{cases} \implies P'(4, 2)$$

1.5. Ángulo de dos rectas

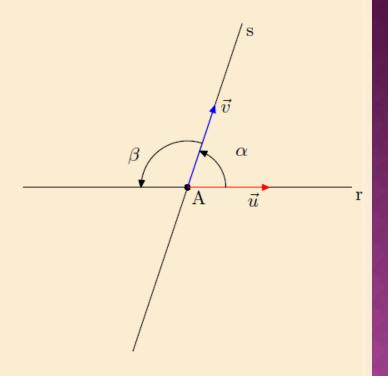
Definición 1.5 El ángulo determinado por dos rectas r y s es le ángulo α que determinan sus vectores direccionales $\overrightarrow{\mathbf{u}}$ y $\overrightarrow{\mathbf{v}}$, su suplementario β .

Ejemplo 1.5. Hallar el ángulo formado por las rectas:

$$r \equiv x + y - 5 = 0$$
 $s \equiv 3x - y + 1 = 0$

Hallamos el ángulo formado por sus vectores direccionales con el producto escalar

$$\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}} = |\overrightarrow{\mathbf{u}}| \cdot |\overrightarrow{\mathbf{v}}| \cdot \cos \alpha$$



$$(1,-1)\cdot(1,3) = \sqrt{1^1 + 1^2} \cdot \sqrt{1^1 + 3^2} \cdot \cos \alpha$$
$$-2 = \sqrt{2} \cdot \sqrt{10} \cdot \cos \alpha$$
$$\cos \alpha = \frac{2}{\sqrt{20}}$$

Ejercicio 24. Hallar los ángulos del triángulo A(0,0), B(4,0) y C(1,3).

2. Distancias

2.1. Distancia de dos puntos

Definición 2.1

Dados los puntos $A(x_0, y_0)$ y $B(x_1, y_1)$ definimos la distancia de A a B como el módulo del vector \overrightarrow{AB} .

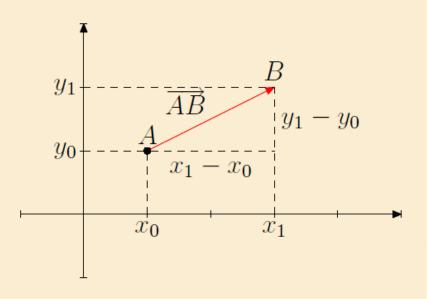
En el gráfico se aprecia que el módulo del vector

$$\overrightarrow{AB}(x_1 - x_0, y_1 - y_0)$$

es la hipotenusa del triángulo rectángulo de catetos $x_1 - x_0$ e $y_1 - y_0$, luego

$$|\overrightarrow{AB}|^2 = (x_1 - x_0)^2 + (x_1 - x_0)^2$$

tomando la raíz cuadrada se obtiene la fórmula de la distancia de dos puntos



$$d(A,B) = \sqrt{(x_1 - x_0)^2 + (x_1 - x_0)^2}$$
(6)

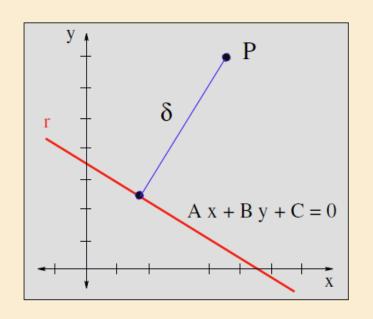
2.2. Distancia de punto a recta

Teorema 2.1. Dada la recta

$$r \equiv A x + B y + C = 0$$

y el punto $P(x_0, y_0)$ la distancia de $P(x_0, y_0)$ a r viene dada por la expresión

$$d(P;r) = \frac{|A x_0 + B y_0 + C|}{\sqrt{A^2 + B^2}}$$



Ejemplo 2.1. Halla la distancia del punto P(3,2) a la recta de ecuación

$$r \equiv 2x + 3y + 5 = 0$$

Solución: Se sustituye el punto en la ecuación de la recta y se divide por el módulo del vector direccional

$$d(P,r) = \frac{|2x_0 + 3y_0 + 5|}{\sqrt{2^2 + 3^2}} = \frac{|2(3) + 3(2) + 5|}{\sqrt{13}} = \frac{17}{\sqrt{13}}$$

 h_C

3.4. Área del triángulo

Definición 3.4 El área en la mitad de cualquier base por la altura correspondiente.

$$A = \frac{1}{2}AB \cdot h_C = \frac{1}{2}AC \cdot h_B = \frac{1}{2}CB \cdot h_A$$

Ejemplo 3.4. Hallar el área del triángulo A(0,0), B(3,1) y C(1,3). Solución:

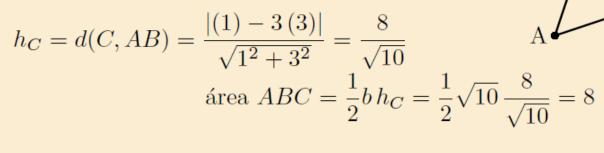
Tomamos como base AB

$$b = d(A, B) = \sqrt{(3-0)^2 + (1-0)^2} = \sqrt{10}$$

La altura es la distancia de C a la recta AB de vector AB(3,1)

$$AB \equiv \frac{x-0}{3} = \frac{y-0}{1} \equiv x-3y = 0$$

$$h_C = d(C, AB) = \frac{|(1) - 3(3)|}{\sqrt{1^2 + 3^2}} = \frac{8}{\sqrt{10}}$$



Ejercicio 31. Halla el área del triángulo de vértices:

$$A(-4,3)$$
 $B(0,5)$ $C(4,-2)$

METRICA DEL ESPACIO

Tabla de Contenido

- 1. Introducción
- 2. Distancias
 - 2.1. Distancia de dos puntos
 - 2.2. Distancia de punto a recta
 - Proyección ortogonal de punto a recta
 - 2.3. Distancia de punto a plano
 - Proyección ortogonal de punto a plano
 - 2.4. Distancia entre dos rectas
- 3. Ángulos en el espacio
 - 3.1. Ángulo entre dos planos
 - 3.2. Ángulos entre recta y plano
 - 3.3. Ángulo entre dos rectas

1. Introducción

En este capítulo trataremos las cuestiones de geometría métrica que se refieren a la medida de distancias y la medida de ángulos.

En el tema de Vectores, las herramientas esenciales fueron los tres productos vistos en el tema:

- producto escalar,
- producto vectorial y
- producto mixto.

que nos permiten hallar la magnitud de un vector, el ángulo de vectores, el área de un paralelogramo y el volumen de un paralelepípedo.

Con esas herramientas en este capítulo podremos determinar las distancias entre puntos, punto y recta, punto y plano y entre dos rectas, así como el cálculo de ángulos entre planos y rectas.

Sección 2: Distancias

2. Distancias

2.1. Distancia de dos puntos

Sean $P(x_0, y_0, z_0)$ y $Q(x_1, y_1, z_1)$ dos puntos cualesquiera. Definimos la distancia de P a Q como la norma del vector \overrightarrow{PQ} que determinan, es decir

$$d(P,Q) = ||\overrightarrow{PQ}|| = \sqrt{(x_1 - x_0)^2 + (y_1 - y_0)^2 + (z_1 - z_0)^2}$$
 (1)

Observa que esta expresión generaliza la distancia de dos puntos en el plano que ya conocías, $d(A, B) = \sqrt{(x_1 - x_0)^2 + (y_1 - y_0)^2}$.

Ejemplo 2.1. Sean los puntos P(3, -1, 2) y Q(1, 5, 0).

Solución: Como
$$\overrightarrow{PQ} = Q - P = (-2, 6, -2)$$

$$d(P,Q) = ||\overrightarrow{PQ}|| = \sqrt{(-2)^2 + (6)^2 + (-2)^2} = \sqrt{44}$$

Ejemplo 2.2. Dados los puntos A(2,-1,2) y B(3,5,7), halar las coordenadas del vector \overrightarrow{AB} y su norma-módulo.

Solución: Siendo los puntos A(2, -1, 2) y B(3, 5, 7)

- $\overrightarrow{AB} = B A = (3, 5, 7) (2, -1, 2) = (1, 6, 5).$
- El módulo $||\overrightarrow{AB}|| = \sqrt{1^2 + 6^2 + 5^2} = \sqrt{62}$

4

Sección 2: Distancias 5

2.2. Distancia de punto a recta

Teorema 2.1. Dados un punto $P(x_0, y_0, z_0)$ y una recta $r \equiv A + \lambda \vec{u}$. Para hallar la distancia de P a la recta r

- Tomemos de la recta un punto cualquiera A y el vector director \vec{u} .
- El área del paralelogramo de aristas ||PA|| y $||\vec{u}||$ es $||\vec{u}| \wedge |\vec{AP}||$.
- lacktriangle La distancia buscada $\delta = PH$ es la altura del paralelogramo

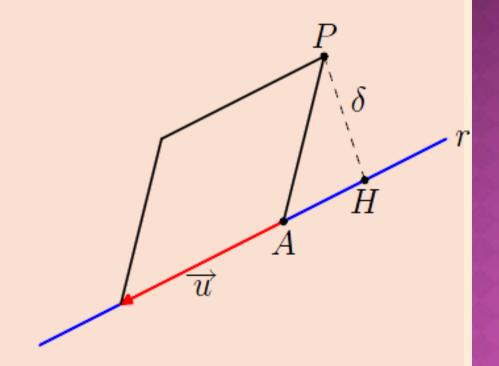
Area del paralelogramo

$$||\vec{u} \wedge \overrightarrow{AP}|| = base \times altura$$

 $||\vec{u} \wedge \overrightarrow{AP}|| = ||\vec{u}|| \times \delta$

Despejando resulta

$$d(P,r) = \delta = \frac{||\vec{u} \wedge \overrightarrow{AP}||}{||\vec{u}||}$$



Ejemplo 2.3. Hallar la distancia de P(3, -3, 1) a la recta

$$r \equiv (x, y, z) = (2, 3, 4) + \lambda (-1, 2, 1)$$

Solución:

- Un punto de la recta es A(2,3,4) y el vector director $\vec{u} = (-1,2,1)$.
- La norma del producto vectorial $||\vec{u} \wedge \overrightarrow{AP}||$: Siendo $\overrightarrow{AP} = (1, -6, -3)$, el producto vectorial es

$$\vec{u} \wedge \overrightarrow{AP} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & -6 & -3 \\ -1 & 2 & 1 \end{vmatrix} = (0, 2, -4)$$

Su norma es

$$||\vec{u} \wedge \overrightarrow{AP}|| = \sqrt{0^2 + 2^2 + (-4)^2} = \sqrt{20}$$

 \blacksquare Siendo la norma de $\vec{u}, \; ||\vec{u}|| = \sqrt{(-1)^2 + 2^2 + 1^2} = \sqrt{6},$ la distancia pedida

$$d(P,r) = \frac{||\vec{u} \wedge \overrightarrow{AP}||}{||\vec{u}||} = \frac{\sqrt{20}}{\sqrt{6}}$$

Proyección ortogonal de punto a recta

Como en el ejemplo anterior, sean el punto P(3, -3, 1) y la recta

$$r \equiv (x, y, z) = (2, 3, 4) + \lambda (-1, 2, 1)$$

Para calcular la proyección ortogonal H del punto P a r, hallamos la intersección de la recta r con el plano π que pasa por P y es \bot a r. Hallamos π , $\pi \equiv -(x-3) + 2(y+3) + (z-1) = 0$.

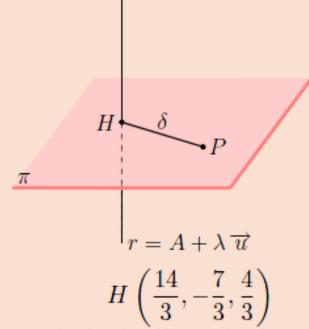
Resolvemos el sistema

$$H = \pi \cap r \left\{ \begin{array}{l} x = 2 - \lambda \\ y = 3 + 2\lambda \\ z = 4 + \lambda \\ \pi = -x + 2y + z + 8 = 0 \end{array} \right.$$

Sustituyendo x, y, z en π , obtenemos

$$-(2 - \lambda) + 2(3 + 2\lambda) + (4 + \lambda) + 8 = 0$$
$$\lambda = -\frac{8}{2}$$

sustituyendo λ en r obtenemos



Se comprueba que d(P,H) = d(P,r), es decir, la distancia de punto a recta es la distancia del punto a su proyección ortogonal sobre r.

Ejercicio 1. Encontrar la distancia del punto P(1,2,1) a la recta

$$r \equiv \frac{x-1}{2} = \frac{y+3}{1} = \frac{z-1}{1}$$

Ejercicio 2. Encontrar la distancia del punto P(1,2,1) a la recta

$$s: \left\{ \begin{array}{ll} x + y - z - 3 & = 0 \\ x - y + z - 1 & = 0 \end{array} \right.$$

Ejercicio 3. Hallar la distancia del origen a la recta

$$\begin{cases} x + y - 5z + 4 = 0 \\ 3x + y + z - 2 = 0 \end{cases}$$

Ejercicio 4. Hallar la proyección ortogonal del punto P(1,2,1) a la recta

$$r \equiv \frac{x-1}{2} = \frac{y+3}{1} = \frac{z-1}{1}$$

Sección 2: Distancias 9

2.3. Distancia de punto a plano

Teorema 2.2. Sea el punto $P(x_0, y_0, z_0)$ y el plano $\pi \equiv ax + by + bz + d = 0$ Tomemos del plano un punto cualquiera A y el vector normal \vec{n} . Sea H la proyección ortogonal de P a π . En el dibujo se aprecia que

$$\alpha = \angle APH = \angle (\vec{AP}, \vec{n})$$

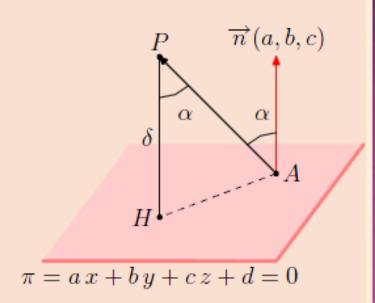
Del producto escalar de \overrightarrow{AP} y \overrightarrow{n} se obtiene:

$$\vec{n} \cdot \overrightarrow{AP} = ||\vec{n}|| \underbrace{||\overrightarrow{AP}|| \cos \alpha}^{\delta}$$

despejando δ ,

 π

$$\mathrm{d}(P,\pi) = \delta = \frac{|\vec{n} \cdot \overrightarrow{AP}|}{||\vec{n}||}$$



Vamos a expresar la fórmula anterior en coordenadas. Siendo A un punto de

$$A(x_1, y_1, z_1) \Longrightarrow \overrightarrow{AP} = (x_0 - x_1, y_0 - y_1, z_0 - z_1)$$

con $\vec{n} = (a, b, c)$, realizamos el producto escalar

$$\vec{n} \cdot \overrightarrow{AP} = (a, b, c) \cdot (x_0 - x_1, y_0 - y_1, z_0 - z_1)$$

= $ax_0 + by_0 + cz_0 - (ax_1 + by_1 + cz_1)$
= $ax_0 + by_0 + cz_0 + d$

ya que como $A \in \pi$, $ax_1 + by_1 + cz_1 = -d$.

$$d(P,\pi) = \frac{|ax_0 + by_0 + cz_0 + d|}{\sqrt{a^2 + b^2 + c^2}}$$
(2)

Ejemplo 2.4. Hallar la distancia del punto P(3, 2, -1) al plano

$$\pi \equiv 2 \, x - y - 2 \, z + 3 = 0$$

Solución:

Para hallar la distancia de P a π se sustituye el punto en la ecuación del plano y se divide por la norma del vector normal al plano.

$$d(P,\pi) = \frac{|2(3) - (2) - 2(-1) + 3|}{\sqrt{2^2 + (-1)^2 + (-2)^2}} = 3$$

Sección 2: Distancias 11

Proyección ortogonal de punto a plano

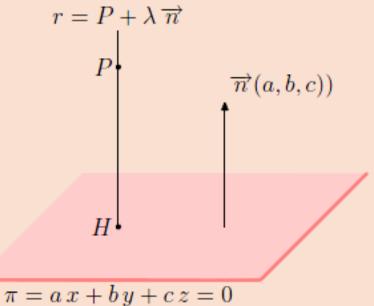
Como en el ejemplo anterior, sean el punto P(3,2,-1) y el plano

$$\pi \equiv 2x - y - 2z + 3 = 0$$

Para calcular la proyección ortogonal H del punto P a π resolvemos la intersección del plano π con la recta \mathbf{r} , que pasa por P y es \perp a π , expresando \mathbf{r} en paramétricas con vector $\vec{n} = (2, -1, -2)$.

$$H = \pi \cap r \begin{cases} x = 3 + 2\lambda \\ y = 2 - \lambda \\ z = -1 - 2\lambda \\ \pi = 2x - y - 2z + 3 = 0 \end{cases}$$
$$2(3+2\lambda) - (2-\lambda) - 2(-1-2\lambda) + 3 = 0$$
$$\lambda = -1$$

Sustituyendo en r, obtenemos



Se comprueba que $d(P, H) = d(P, \pi)$, es decir, la distancia de punto a plano

es la distancia del punto a su proyección ortogonal sobre π .

Ejercicio 5. Determinar la distancia del punto A(5,5,3) al plano

$$\pi \equiv (x, y, z) = (0, 0, 4) + \lambda(2, 2, -1) + \mu(-3, 2, 0)$$

Ejercicio 6. Hallar el punto P del plano α : x + y + z - 3 = 0 que está más próximo al punto A(1,0,0). ¿Cuál será la distancia de una recta, contenida en dicho plano y que pase por el punto P, al punto A(1,0,0)?.

Ejercicio 7. Se considera el plano de ecuación:

$$\alpha: 2x + y - z - 5 = 0$$

Calcular la ecuación general de los planos paralelos al anterior. Calcular también un plano paralelo al anterior cuya distancia al mismo sea 7. ¿Es único este plano ?.

Ejercicio 8. Determinar, en función de x, la distancia de un punto P(x, 0, 0) a la recta de ecuaciones

$$r \equiv \begin{array}{cc} x + y &= 0 \\ y + z &= 0 \end{array}$$

¿Para qué punto (x, 0, 0) la distancia a dicha recta es igual a la distancia al plano $\pi \equiv x = 0$?.

2.4. Distancia entre dos rectas

Teorema 2.3. Sean las rectas

$$r \equiv A + \lambda \, \vec{u}$$
 $s \equiv B + \mu \, \vec{v}$

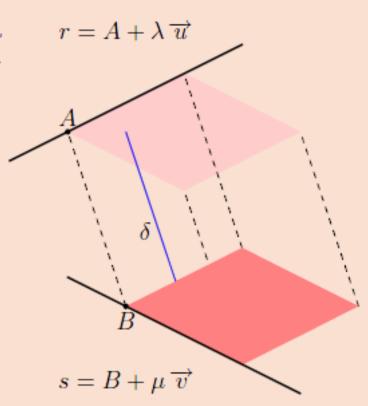
Con los vectores \vec{u} , \vec{v} y \overrightarrow{AB} se determina el paralelepípedo con volumen $|\overrightarrow{AB}, \vec{u}, \vec{v}|$. Por construcción las rectas r y s están contenidas en dos planos paralelos, luego la distancia entre las rectas es la distancia

entre los planos, que equivale a la $r = A + \lambda \overrightarrow{u}$ altura del paralelepípedo construido.

Volumen =
$$|\vec{AB}, \vec{u}, \vec{v}|$$

Base =
$$||\vec{u} \wedge \vec{v}||$$

$$\mathbf{d}(r,s) = \delta = \frac{|\vec{AB}, \vec{u}, \vec{v}|}{||\vec{u} \wedge \vec{v}||}$$



Ejemplo 2.5. Hallar la distancia entre las rectas

$$r \equiv \frac{x-2}{5} = \frac{y+3}{2} = \frac{z}{3}$$
 $s \equiv \frac{x+2}{2} = y-5 = \frac{z}{3}$

Solución: Un punto $A(2,-3,0) \in r$, un punto $B(-2,5,0) \in s$ siendo los vectores directores respectivos $\vec{u} = (5,2,3)$ y $\vec{v} = (2,1,3)$

$$det(\vec{u}, \vec{v}, \overrightarrow{AB}) = \begin{vmatrix} 5 & 2 & 3 \\ 2 & 1 & 3 \\ -4 & 8 & 0 \end{vmatrix} = -84$$

El producto vectorial es

$$\vec{u} \wedge \vec{v} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 5 & 2 & 3 \\ 2 & 1 & 3 \end{vmatrix} = (3, -9, 1)$$

luego

$$d(r,s) = \frac{|\vec{u}\,\vec{v}, \overrightarrow{AB}|}{||\vec{u}\wedge\vec{v}||} = \frac{84}{\sqrt{91}}$$

Ejercicio 9. Hallar la distancia entre las rectas :

$$r: \left\{ \begin{array}{ll} x-2 &= 0 \\ y+3 &= 0 \end{array} \right. \qquad s: \left\{ \begin{array}{ll} x-2z &= 0 \\ y+z &= 3 \end{array} \right.$$

3. Ángulos en el espacio

3.1. Ángulo entre dos planos

El ángulo entre dos planos secantes π_1 y π_2 es el menor de los ángulos que determinan. Dados

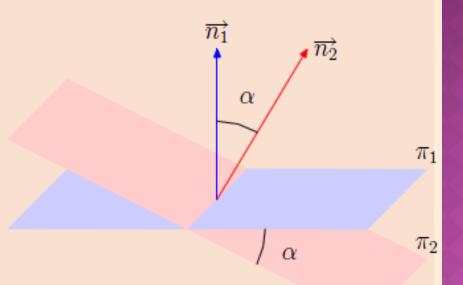
$$\pi_1 \equiv A_1 x + B_1 y + C_1 z = D_1
\pi_2 \equiv A_2 x + B_2 y + C_2 z = D_2$$

el ángulo que forman coincidirá con el ángulo quer forman sus vectores normales $\vec{n}_1(A_1, B_1, C_1)$ y $\vec{n}_2(A_2, B_2, C_2)$ si es agudo o su suplementario si es obtuso.

Aplicando la definición del producto escalar, obtenemos el coseno de

$$\alpha = \angle(\pi_1, \pi_2)$$

$$cos(\pi_1, \pi_2) = \frac{|\vec{n}_1 \cdot \vec{n}_2|}{||\vec{n}_1|| \, ||\vec{n}_2||}$$



3.2. Ángulos entre recta y plano

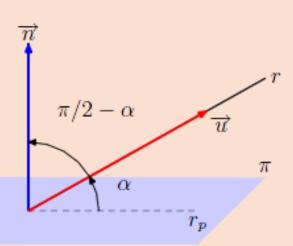
El ángulo entre una recta \mathbf{r} y un plano π es el ángulo α que forma la recta \mathbf{r} con la recta \mathbf{r}_p que se obtiene al proyectar \mathbf{r} sobre π . Observar que α corresponde al complementario del ángulo que determinan el vector \vec{u} de la recta con el vector normal \vec{n} del plano . Siendo los vectores respectivos $\vec{n}(a,b,c)$ y $\vec{u}(u_1,u_2,u_3)$ tendremos.

Como

$$\alpha = \frac{\pi}{2} - \angle(\vec{n}, \vec{u})$$

y $sen \alpha = cos(\vec{n}, \vec{u})$

$$sen(r,\pi) = \frac{|\vec{u} \cdot \vec{n}|}{||\vec{u}|| \, ||\vec{n}||}$$



Ejemplo 3.1. Hallar el ángulo que forman la recta r y el plano π

$$r \equiv \frac{x-1}{2} = \frac{y+2}{-1} = \frac{z-1}{1}$$
 $\pi \equiv x - y - z = 0$

Solución: El ángulo $\angle(r,\pi) = 90 - \angle(\vec{u},\vec{n}),$

$$\operatorname{sen} \alpha = \frac{(2, -1, 1) \cdot (1, -1, -1)}{\sqrt{2^2 + 1^2 + 1^2} \sqrt{1^2 + 1^2 + 1^2}} = \frac{2}{\sqrt{6}\sqrt{3}} = \frac{\sqrt{2}}{3}$$

3.3. Ángulo entre dos rectas

Sean las rectas r y s de ecuaciones:

$$r \equiv A + \lambda \vec{u}$$
 $s \equiv B + \mu \vec{v}$

definimos el ángulo determinado por r y s como el ángulo que determinan sus vectores direccionales, es decir

$$cos(r,s) = \frac{|\vec{u} \cdot \vec{v}|}{||\vec{u}|| \, ||\vec{v}||} \tag{3}$$

Ejemplo 3.2. Calcular el ángulo formado por las rectas

$$r \equiv \frac{x-1}{2} = \frac{y+3}{1} = \frac{z-1}{1}$$
$$s \equiv \frac{x-2}{1} = \frac{y-1}{-3} = \frac{z-1}{1}$$

Solución:

El ángulo $\angle(r,s) = \angle(\vec{u},\vec{v})$, por el producto escalar de vectores

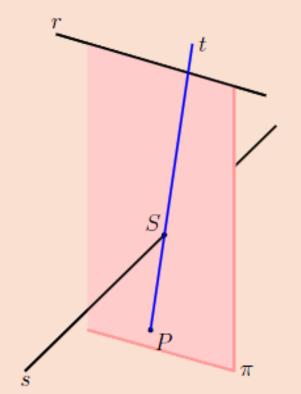
$$\cos \alpha = \frac{(2,1,1) \cdot (1,-3,1)}{\sqrt{2^2 + 1^2 + 1^2} \sqrt{1^2 + 3^2 + 1^2}} = 0 \Longrightarrow \alpha = 90^{\circ}$$

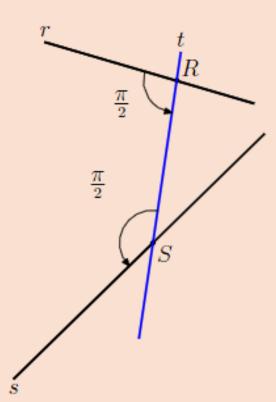
luego las rectas son ortogonales.

4. Ejercicios de interés

Ahora vamos a tratar dos problemas interesantes como son:

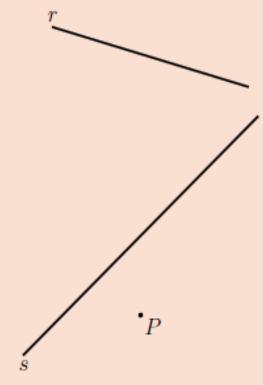
- el cálculo de la recta que desde un punto corta o se apoya en otras dos rectas dadas.
- y el cálculo de la recta que corta perpendicularmente a dos rectas dadas.





Sean P(-1,0,1) y las rectas

$$r \equiv \frac{x-3}{5} = \frac{y+1}{2} = \frac{z}{-3}$$
$$s \equiv \frac{x}{2} = \frac{y+2}{1} = \frac{z-1}{-3}$$



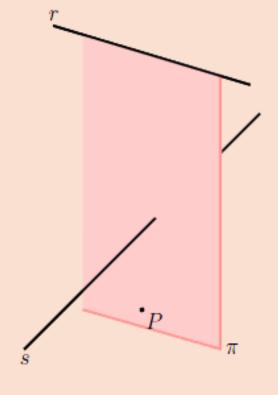
Sean P(-1,0,1) y las rectas

$$r \equiv \frac{x-3}{5} = \frac{y+1}{2} = \frac{z}{-3}$$
$$s \equiv \frac{x}{2} = \frac{y+2}{1} = \frac{z-1}{-3}$$

• Hallamos el plano $\pi = \langle P; r \rangle$

$$R(3, -1, 0) \in r, \overrightarrow{PR}(4, -1, -1) \text{ y } \overrightarrow{r}(5, 2, -3)$$

$$\pi = \begin{vmatrix} x+1 & y & z-1 \\ 4 & -1 & -1 \\ 5 & 2 & -3 \end{vmatrix} = 0$$



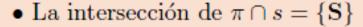
Sean P(-1,0,1) y las rectas

$$r \equiv \frac{x-3}{5} = \frac{y+1}{2} = \frac{z}{-3}$$
$$s \equiv \frac{x}{2} = \frac{y+2}{1} = \frac{z-1}{-3}$$

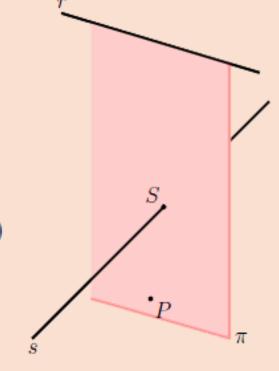
• Hallamos el plano $\pi = \langle P; r \rangle$

$$R(3,-1,0) \in r$$
, $\overrightarrow{PR}(4,-1,-1)$ y $\overrightarrow{r}(5,2,-3)$

$$\pi = \begin{vmatrix} x+1 & y & z-1 \\ 4 & -1 & -1 \\ 5 & 2 & -3 \end{vmatrix} = 0$$



$$\begin{cases}
\pi \equiv 5x + 7y + 13z = 8 \\
s \equiv \begin{cases}
x = 2\lambda \\
y = -2 + \lambda \\
z = 1 - 3\lambda
\end{cases} \implies 5(2\lambda) + 7(-2 + \lambda) + 13(1 - 3\lambda) = 8 \\
\lambda = \frac{9}{22} \Longrightarrow S(\frac{9}{11}, -\frac{35}{22}, -\frac{5}{22})
\end{cases}$$



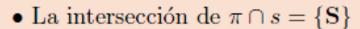
Sean P(-1,0,1) y las rectas

$$r \equiv \frac{x-3}{5} = \frac{y+1}{2} = \frac{z}{-3}$$
$$s \equiv \frac{x}{2} = \frac{y+2}{1} = \frac{z-1}{-3}$$

• Hallamos el plano $\pi = \langle P; r \rangle$

$$R(3, -1, 0) \in r, \overrightarrow{PR}(4, -1, -1) \text{ y } \overrightarrow{r}(5, 2, -3)$$

$$\pi = \begin{vmatrix} x+1 & y & z-1 \\ 4 & -1 & -1 \\ 5 & 2 & -3 \end{vmatrix} = 0$$



$$\begin{cases} \pi \equiv & 5x + 7y + 13z = 8 \\ s \equiv & \begin{cases} x = 2\lambda \\ y = -2 + \lambda \\ z = 1 - 3\lambda \end{cases} \implies \begin{cases} 5(2\lambda) + 7(-2 + \lambda) + 13(1 - 3\lambda) = 8 \\ \lambda = \frac{9}{22} \Longrightarrow S(\frac{9}{11}, -\frac{35}{22}, -\frac{5}{22}) \end{cases}$$

t pasa por P y S
$$t \equiv \frac{x+1}{18} = \frac{y}{-35} = \frac{z-1}{-5}$$

Recta que corta perpendicularmente a dos rectas

Sean las rectas

$$\begin{cases} r & \equiv \frac{x-2}{1} = \frac{y-1}{0} = \frac{z}{-1} \\ s & \equiv \frac{x}{0} = \frac{y+2}{-1} = \frac{z-2}{1} \end{cases}$$

 Escribimos R y S en forma paramétrica como

$$R(2+\lambda,1,-\lambda) \in r$$

$$S(0,-2-\mu,2+\mu) \in s$$

Se tiene que cumplir

$$\overrightarrow{RS} \perp \overrightarrow{u} \qquad \overrightarrow{RS} \perp \overrightarrow{v}$$

$$\overrightarrow{RS} = (-2 - \lambda, -3 - \mu, 2 + \mu + \lambda)$$

$$\left\{ \begin{array}{l} \overrightarrow{RS} \cdot \overrightarrow{u} = 0 \\ \overrightarrow{RS} \cdot \overrightarrow{v} = 0 \end{array} \right. \Longrightarrow \begin{array}{l} 2\lambda + \mu = -4 \\ \lambda + 2\mu = -5 \end{array} \Longrightarrow \mu = -2 \quad \lambda = -1$$

sustituyendo obtenemos R y S, $\mathbf{R}(1,1,1)$ $\mathbf{S}(0,0,0)$. La recta t pedida pasa por R y S:

$$t \equiv \frac{x}{1} = \frac{y}{1} = \frac{z}{1}$$

Ejercicio 10. Hallar la ecuación de la recta r_1 que pasa por el punto (1,0,0) y es perpendicular al plano x - y - z + 2 = 0.

Ejercicio 11. Hallar la ecuación del plano que pasa por el punto (1,1,1) y es perpendicular a la recta x = t y = 0 z = t.

Ejercicio 12. Calcular alguna recta que sea paralela al plano de ecuación $\pi_1 \equiv x - 2y + z = 1$ y que también sea paralela al plano π_2 que pasa por los puntos de coordenada P(2,0,1), Q(0,2,1) y R(1,-1,0).

Ejercicio 13. Determinar la ecuación de un plano que contenga a la recta r y sea perpendicular al plano π , siendo:

$$r \equiv \frac{x-1}{2} = \frac{y-1}{-3} = \frac{z+1}{-1}$$
$$\pi : \begin{cases} x = \lambda - \mu \\ y = \lambda \\ z = \mu \end{cases}$$

Ejercicio 14. Hallar el punto simétrico de P(1,2,3) respecto del plano α : x-3y-2z+4=0.

Ejercicio 15. Un triángulo tiene de vértices A(0,0,0), B(1,1,1) y el tercer vértice situado en la recta $\{x=2y;\ z=1\}$. Calcular las coordenadas del tercer vértice, sabiendo que el área del triángulo es $\frac{\sqrt{2}}{2}$.

Ejercicio 16. Hallar las ecuaciones de la recta s que pasa por el punto P(2,-1,1) y corta perpendicularmente a la recta

$$r \equiv \frac{x-2}{1} = \frac{y-2}{1} = z$$

Ejercicio 17. Dados los puntos P(1,1,2) y Q(1,-1,2) y la recta r de ecuaciones paramétricas.

$$r \equiv \begin{cases} x = -1 + 2\alpha \\ y = -1 + \alpha \\ z = 1 \end{cases}$$

Se pide

- a) Encontrar la posición relativa de r y la recta determinada por P y Q
- b) Hallar el punto o puntos R de r para que el triángulo PQR sea isósceles de lados iguales PR y QR

Ejercicio 18. Hallar la perpendicular común a las rectas r y s:

$$\left\{ \begin{array}{ll} r & \equiv & x=y=z \\ s & \equiv & x=y=3z-2 \end{array} \right.$$

Ejercicio 19. La recta

$$r \equiv \left\{ \begin{array}{l} x + y = 1 \\ \lambda y + z = 1 \end{array} \right.$$

corta en P y Q a los planos $\pi_1 \equiv y = 0$, $\pi_2 \equiv x = 0$.

- a) Determinar en función de λ los puntos del eje Oz que equidistan de P y Q.
- b) Determinar λ para que además los puntos del eje Oz formen con P y Q un triángulo equilátero.

Ejercicio 20. Se sabe que la recta $r:(x,y,z)=(1,-b,0)+\lambda(2,-10,1)$ y el plano $\pi\equiv 2\,x+a\,y+z=2$ se cortan perpendicularmente y que la recta pasa por el punto (-1,1,-1). Calcular a,b y el punto de corte.