Escala de apreciación adecuada

11
110
11
<u> </u>

Nombre del Estudiente:	Curso:	Fecha:	N° de Grupo:	Tiempo: 2:30 horas
------------------------	--------	--------	--------------	--------------------

Objetivos: Armar un circuito básico de control, según los protocolos establecidos, valorando la normativa vigente.

El puntaje de la escala es el siguiente:

1 inicial = 1 punto 2 En proceso = 2 puntos 3 Logrado = 3 puntos 4 Especialista = 4 puntos puntaje máximo: 40 puntos Puntaje Mínimo: 20 puntos

punt	aje maximo: 40 puntos - Puntaje Minimo: 20 puntos				
N°	Indicadores	1	2	3	4
1	Selecciona los elementos de control de acuerdo a los protocolos establecido				
	en manuales técnicos o planos de comando Industrial según normativa con				
	apoyo de sus compañeros y docente.				
2	Selecciona los elementos de Potencia de acuerdo a los protocolos				
	establecidos en manuales técnicos o planos de fuerza Industrial según				
	normativa con apoyo de sus compañeros o docente.				
3	Alambra el circuito de comando según lo especificado en los planos de control				
	marcando las conexiones con colores paso a paso.				
4	Conecta el circuito de Potencia según lo especificado en los planos de Fuerza,				
	respetando la normativa indicada. marcando las conexiones con diferentes				
	colores.				
5	Presenta un cableado de control visiblemente ordenado, según normativa.				
	(Solo Algunos Cables están alineados, lisos, rectos o curvos en 90 grados).				
6	Presenta un cableado de potencia visiblemente ordenado (La gran mayoría de				
	los Cables están alineados, lisos, rectos o curvos en 90 grados).				
7	Realiza las pruebas de corto circuito en la etapa de control industrial				
	aplicando los protocolos N°1 y 2 (Regla de 4 pasos con apoyo visual a color).				
8	Realiza las pruebas de corto circuito en la etapa de potencia industrial				
	basados en los protocolos establecidos N°2 y 3 (Regla de 4 pasos con apoyo				
	visual a color).				
9	Realiza las pruebas de circuito abierto en la etapa de potencia industrial,				
	según la técnica N°2 (protocolo 1 y 2 según normativa). (Solo 2 pruebas)				
10	Realiza las pruebas de circuito abierto en la etapa de control industrial, de				
	acuerdo a la técnica N°2 (protocolo 1 y 2 según normativa) (En simulación)				
			1		l

Profe Armando Nuñez G.

I.MUNICIPALIDAD DE LA CISTERNA Liceo Politécnico Ciencia y Tecnología