

# Liceo Bicentenario de Excelencia Domingo Ortiz de Rozas Asignatura: Matemática

Coelemu Profesor: MARR/LGB/MCC

# GUIA TEÓRICO PRÁCTICA CUARTO MEDIO FUNCIONES Y PROCESOS INFINITOS

**GTP 04** 

**Tema:** Función Inversa

| Nombre Estudiante: | Curso:     |   |   | F | Fecha: |    |    |      |
|--------------------|------------|---|---|---|--------|----|----|------|
|                    | <b>4</b> ° | A | В | C | 110    | 02 | 06 | 2020 |

#### **OBJETIVOS DE APRENDIZAJE:**

- Analizar las condiciones para la existencia de la función inversa.
- Determinar inversa de funciones.
- Reconocer el gráfico de una función inversa.

### **OBJETIVOS ESPECÍFICOS:**

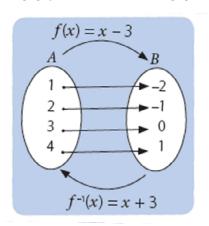
- Revisar Video tutoriales de los conceptos, procedimientos y ejemplos de los Objetivos planteados en plataforma Classroom.
- Leer guía Teórico y práctica para reforzar tus conocimientos y habilidades a través de los conceptos, procedimientos, ejemplos y prácticas propuestas.
- Resolver dudas con apoyo de tu(s)profesor(es) en Classroom.

### **FUNCIÓN INVERSA**

Si una función real f(x) es biyectiva, entonces f(x) tiene función inversa que se denota por  $f^{-1}(x)$ .

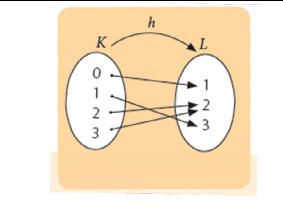
## **Ejemplo:**

En el diagrama sagital se representa una función f(x) y su inversa  $f^{-1}(x)$ . Si te fijas, el dominio de f(x) equivale al recorrido de  $f^{-1}(x)$  y el recorrido de f(x) es el dominio de  $f^{-1}(x)$ .

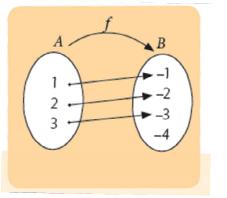


Además, para que  $f^{-1}(x)$  sea función, a cada elemento de **B** le corresponde una única pre imagen, de manera que f(x) debe ser una función **biyectiva**.

Ejemplos de no existencia de inversa de una función f(x)



En el diagrama, h(x) no es **inyectiva** ya que h(2) = h(3) = 2. Luego,  $h^{-1}(x)$  no es <u>función</u> pues un elemento de su dominio tiene dos imágenes (2 y 3).



En el diagrama **f(x)** no es **sobreyectiva** ya que –4 no tiene preimagen. Luego, **f**<sup>-1</sup>(**x**) no es función pues no todos los elementos de su dominio tienen una imagen.

Por lo tanto, **no todas las funciones** tienen una inversa, es decir, solo tienen inversa aquellas funciones que son **biyectivas.** 

## DETERMINAR FUNCIÓN INVERSA ANALÍTICAMENTE Y GRÁFICAMENTE

### **EJEMPLOS:**

# Ejemplo 1)

Sea la función f(x) = x - 3. Encontrar su inversa  $f^{-1}(x)$  ... (ejemplo diagrama página 1)

#### **Desarrollo:**

Como f(x) es una función afín, entonces es Biyectiva. Por lo tanto, tiene inversa

**Nota:** Una función afín tiene forma f(x) = mx + n

#### Procedimiento matemático:

| f (x) = x - 3       | Función dada           |  |  |
|---------------------|------------------------|--|--|
| y = x - 3           | f(x) = y               |  |  |
| y + 3 = x           | Despejar la variable x |  |  |
| x + 3 = y           | Cambia variables       |  |  |
| $f^{-1}(x) = x + 3$ | Escribe su inversa     |  |  |

**Actividad:** Graficar ambas funciones con geogebra en línea (Registrar lo observado) <a href="https://www.geogebra.org/graphing?lang=es">https://www.geogebra.org/graphing?lang=es</a>

# Ejemplo 2)

Determina la inversa de la función  $f(x) = \frac{1}{2}x + \frac{1}{5}$ . Luego, trazar grafica de f(x) y  $f^{-1}(x)$ 

#### **Desarrollo:**

**f(x)** es función afín, es biyectiva, por lo tanto, existe inversa.

# Procedimiento matemático:

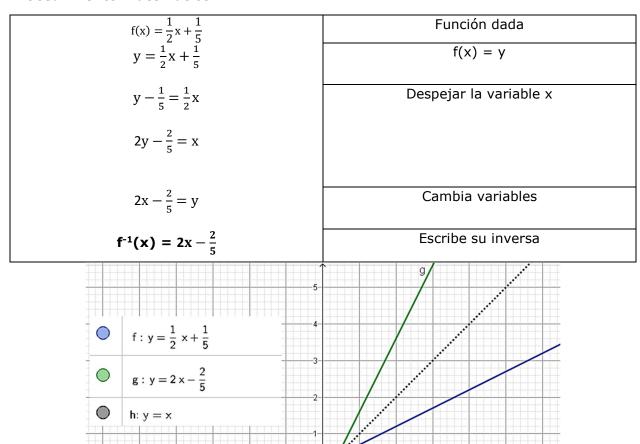


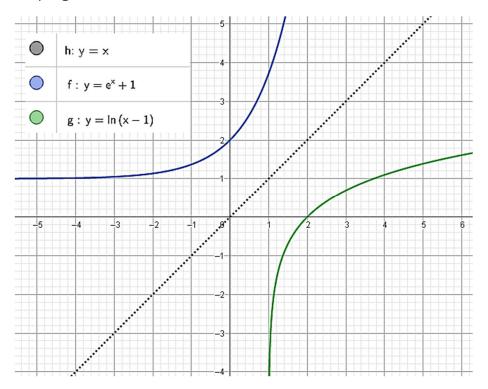
Imagen: geogebra

En la figura se muestran las gráficas de f(x) y  $f^{-1}(x)$ . Las gráficas de ambas funciones son simétricas respecto de la recta y = x también llamada, **función identidad** (línea punteada).

## Ejemplo 3)

Visualiza la gráfica de las funciones  $f(x) = e^x + 1$  y  $g(x) = \ln(x - 1)$ .

Luego, verifica que  $\boldsymbol{g}$  es la inversa de  $\boldsymbol{f}$ .



#### **Desarrollo:**

En la figura, se muestran las gráficas de las funciones f(x) y g(x)

Al parecer las gráficas son simétricas respecto de la recta y = x, de modo que podemos suponer que g(x) es la inversa de f(x).

Para verificar lo anterior podemos calcular ( $g \circ f$ )(x)... (Guía 3) Observa:

$$(g \circ f)(x) = g(f(x)) = ln((e^x + 1) - 1) = ln(e^x) = x \cdot ln(e) = x$$

Luego, como  $(g \circ f)(x) = x$ , la función g(x) es la inversa de f(x).

## **Observación Importante:**

Si al componer dos funciones f(x) y g(x), su resultado es la función identidad y = x, entonces se dice que una es inversa de la otra.

Es decir,

Si  $(f \circ g)(x) = (f(g(x)) = x \text{ entonces } g(x) \text{ es inversa de } f(x) \text{ y viceversa}$ 

# Ejemplo 4)

Sea f(x) = 2x - 1 y  $g(x) = \frac{x-1}{2}$ . Calcule (f o g) (x) y (g o f) (x) y registre sus conclusiones Procedimiento para calcular (f o g) (x):

| $(f \circ g) (x) = (f (g(x))$                                                         | Por definición de compuesta                                                           |  |  |
|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--|--|
| $f\left(\frac{x-1}{2}\right)$                                                         | Reemplazando la expresión de g(x) en el dominio de f(x)                               |  |  |
| $2\left(\frac{x-1}{2}\right) - 1$ $x - 1 - 1$                                         | Aplicando función f(x) =2x - 1  Se simplifica por 2, y se reducen términos semejantes |  |  |
| X                                                                                     | Función identidad                                                                     |  |  |
| Conclusión como (f o g)(x) = x se concluye que $f(x)$ y $g(x)$ son inversas entre si. |                                                                                       |  |  |

# De manera similar, realizamos (g o f) (x):

| $(g \circ f)(x) = (g(f(x)))$                                                          | Por definición de compuesta                                |  |
|---------------------------------------------------------------------------------------|------------------------------------------------------------|--|
| g(2x-1)                                                                               | Reemplazando la expresión de f(x) en el<br>dominio de g(x) |  |
| $\frac{(2x-1)-1}{2}-1$                                                                | Aplicando función $g(x) = \frac{x-1}{2}$                   |  |
| $\frac{2x-1-1}{2}-1$                                                                  | Eliminando ()                                              |  |
| $\frac{2x-2}{2}-1$                                                                    | Reduciendo términos semejantes                             |  |
| $\frac{2(x-1)}{2}-1$                                                                  | Factorizando por 2 y simplificando por el<br>mismo valor   |  |
| x - 1 - 1                                                                             | Se reducen términos semejantes                             |  |
| X                                                                                     | Función identidad                                          |  |
| Conclusión como (g o f)(x) = x se concluye que $g(x)$ y $f(x)$ son inversas entre si. |                                                            |  |

# Ejemplo 5)

Si  $f(x) = x^5 + 1$ , entonces cuanto es  $f^{-1}(33)$  es:

#### **Desarrollo:**

**f(x)** es función biyectiva, por lo tanto, existe inversa. (Compruébelo)

## Procedimiento matemático:

| $f(x) = x^5 + 1$            | Función dada           |
|-----------------------------|------------------------|
| $y = x^5 + 1$               | f(x) = y               |
| $y - 1 = x^5$               | Despejar la variable x |
| $\sqrt[5]{y-1} = x$         |                        |
| $\sqrt[5]{x-1} = y$         | Cambia variables       |
| $f^{-1}(x) = \sqrt[5]{x-1}$ | Escribe su inversa     |

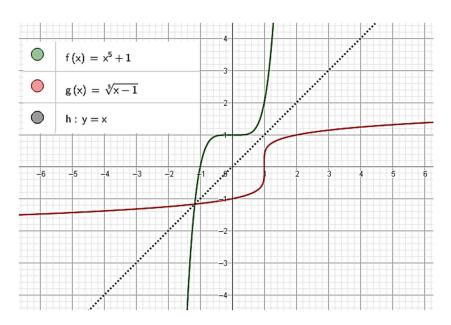
Por lo tanto,

$$f^{-1}(33) = \sqrt[5]{33 - 1} = \sqrt[5]{32} = 2$$

La respuesta es 2

# **Observaciones:**

Nuevamente se observa que la función f(x) y g(x) son simétricas respecto a la recta y = x.



## **Ejercicios Propuestos:**

iDesarrolla los ejercicios propuestos en la próxima tarea!!!! Éxito, tu puedes...

Y no olvides preguntar tus dudas... para eso estamos... no tengas vergüenza. Hazte el tiempo.